Welcome to Hilbert’s Hotel

Il matematico David Hilbert immagina un hotel con infinite stanze, tutte occupate, ed afferma che qualsiasi sia il numero di altri ospiti che sopraggiungano, sarà sempre possibile ospitarli tutti, anche se il loro numero è infinito.

Nel caso semplice, arriva un singolo nuovo ospite. Il furbo albergatore sposterà tutti i clienti nella camera successiva (l’ospite della 1 alla 2, quello della 2 alla 3, etc.); in questo modo, benché l’albergo fosse pieno è comunque, essendo infinito, possibile sistemare il nuovo ospite.

Un caso meno intuitivo si ha quando arrivano infiniti nuovi ospiti. Sarebbe possibile procedere nel modo visto in precedenza, ma solo scomodando infinite volte gli ospiti (già spazientiti dal precedente spostamento): sostiene allora Hilbert che la soluzione sta semplicemente nello spostare ogni ospite nella stanza con numero doppio rispetto a quello attuale (dalla 1 alla 2, dalla 2 alla 4,etc.), lasciando ai nuovi ospiti tutte le camere con i numeri dispari, che sono essi stessi infiniti, risolvendo dunque il problema. Gli ospiti sono tutti dunque sistemati, benché l’albergo fosse pieno.

Ancora più difficile: ci sono infiniti alberghi con infinite stanze tutti al completo. Tutti gli alberghi chiudono, tranne uno. Tutti gli ospiti vogliono alloggiare nell’unico albergo rimasto aperto. Sarebbe possibile procedere come prima, ma solo scomodando infinite volte gli ospiti. Un modo alternativo, invece, è di assegnare ad ogni persona una coppia di numeri (n,m) in cui n indica l’albergo di provenienza, e m la relativa stanza.